Categories: Sources Factors: Development	a) New Water	b) More efficient use of water	c) Other sources in basins that are not closed
1. Hydropower and power trading	New Water can be created by the siting of dams where evap- orative losses are minimised. The interplay to Green and Blue Water dynamics should be addressed.	The siting of dams in trans- boundary basins influences the geographical pattern of water availability. This has a profound impact on the net benefits arising from a trans- boundary watercourse.	Power trade provides the op- portunity to optimise complex power-supply alternatives al- lowing for a mix of sources of fuel, including hydropower, fos- sil fuels, nuclear, and renewable energy such as sun and wind. It reduces costs and provides for transparency in all transactions for the consumers.
2. Primary production	Desalinated sources of water are generally not suitable for agricultural use, due to cost and quality-related constraints. However, there is great scope for the re-use of treated waste- waters in many developing countries. Inter-basin transfers are also likely to become much more common in the future.	The key method of relevance to increasing the efficiency of water use for primary pro- duction involves closer atten- tion to the Green Water-Blue Water interface. The output of the agricultural sector can be greatly enhanced in many transboundary basins, if this is taken into account.	Many opportunities exits for increasing the production of biomass by optimising land and water use. This provides opportunities to produce bio-energy to meet the grow- ing demand for energy at the global level and scaling up e.g. aquaculture to meet growing food demands.
3. Urban growth and industrial development	The much higher economic returns from water in the in- dustrial and services sectors (compared to the agricultural sector) provide a route to en- hanced economic growth for many developing countries. However, societal effects must be addressed.	Where inter-sectoral alloca- tions occur and move water from agriculture to the sectors with higher economic returns, it is most important that the resource is used efficiently, maximising the economic re- turns per unit volume.	To ensure reliable supplies of water for growing urban and industrial needs, water should be managed and stored so that losses are minimised. Water can be stored underground through recharge of aquifers for both water supply and to protect coastal aquifers from salt water intrusion.
4. Environment and ecosystem services	Enhanced attention to the upstream Green Water-Blue Water interface can improve or guarantee aquatic ecosys- tem services in downstream stretches of shared water- courses. Benefits from this can be transferred upstream, as in the 'Green Credit' proposals.	All forms of more efficient wa- ter use will alter river flow dy- namics, and this offers poten- tial for optimising returns from ecosystem services. Fisheries and tourism are especially im- portant generators of income in such scenarios.	In basins that are not closed ecosystems such as wetlands that have been degraded can be restored by allocating water to restore their capacity to gen- erate ecosystem services. This provides benefits such as wa- ter purification and increased biodiversity.
5. Others (every basin is unique and other op- portunites may exist)	Many urban areas are found along coastlines. Desalination of seawater provides, where economically feasible, a new water source for high value use. The use of desalinated water may reduce the pressure to abstract water for e.g. urban areas in water stressed basins.	Recurrent droughts are a major obstacle for farmers relying on rainfed agriculture to receive a return on their investment. By improving the natural storage capacity through improved Green/Blue Water manage- ment and groundwater storage a basin system can be less vulnerable to the impacts of drought.	Floods destroy physical infra- structure and social and eco- nomic systems in many basins globally. Flood protection and early warning systems may be important strategies to increase the resilience of basins providing downstream benefits. Storage infrastructure or restoring wa- tersheds are tools to consider.

Table 1. The conceptual framework for the TWO Analysis.